Extensions 1→N→G→Q→1 with N=C3 and Q=C22.36C24

Direct product G=N×Q with N=C3 and Q=C22.36C24
dρLabelID
C3×C22.36C2496C3xC2^2.36C2^4192,1431

Semidirect products G=N:Q with N=C3 and Q=C22.36C24
extensionφ:Q→Aut NdρLabelID
C31(C22.36C24) = C42.99D6φ: C22.36C24/C42⋊C2C2 ⊆ Aut C396C3:1(C2^2.36C2^4)192,1093
C32(C22.36C24) = C42.115D6φ: C22.36C24/C4×D4C2 ⊆ Aut C396C3:2(C2^2.36C2^4)192,1120
C33(C22.36C24) = C42.133D6φ: C22.36C24/C4×Q8C2 ⊆ Aut C396C3:3(C2^2.36C2^4)192,1141
C34(C22.36C24) = C6.712- 1+4φ: C22.36C24/C4⋊D4C2 ⊆ Aut C396C3:4(C2^2.36C2^4)192,1162
C35(C22.36C24) = C6.222- 1+4φ: C22.36C24/C22⋊Q8C2 ⊆ Aut C396C3:5(C2^2.36C2^4)192,1199
C36(C22.36C24) = C6.242- 1+4φ: C22.36C24/C22⋊Q8C2 ⊆ Aut C396C3:6(C2^2.36C2^4)192,1202
C37(C22.36C24) = C6.652+ 1+4φ: C22.36C24/C22.D4C2 ⊆ Aut C396C3:7(C2^2.36C2^4)192,1221
C38(C22.36C24) = C42.137D6φ: C22.36C24/C4.4D4C2 ⊆ Aut C396C3:8(C2^2.36C2^4)192,1228
C39(C22.36C24) = C42.144D6φ: C22.36C24/C4.4D4C2 ⊆ Aut C396C3:9(C2^2.36C2^4)192,1241
C310(C22.36C24) = C42.164D6φ: C22.36C24/C422C2C2 ⊆ Aut C396C3:10(C2^2.36C2^4)192,1269
C311(C22.36C24) = C42.178D6φ: C22.36C24/C4⋊Q8C2 ⊆ Aut C396C3:11(C2^2.36C2^4)192,1292


׿
×
𝔽